VARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT
نویسنده
چکیده مقاله:
The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state and the control variable. As a result, it can be proved that the discrete solutions possess the convergence property of order. Finally, a numerical example is presented which confirms the theoretical results.
منابع مشابه
variational discretization and mixed methods for semilinear parabolic optimal control problems with integral constraint
the aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. the state and co-state are approximated by the lowest order raviart-thomas mixed finite element spaces and the control is not discreted. optimal error estimates in l2 are established for the state...
متن کاملVariational Discretization and Mixed Methods for Semilinear Parabolic Optimal Control Problems with Integral Constraint
ABSTRACT The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L are established for t...
متن کاملDiscretization Methods for Semilinear Parabolic Optimal Control Problems
We consider an optimal control problem described by semilinear parabolic partial differential equations, with control and state constraints. Since this problem may have no classical solutions, it is also formulated in the relaxed form. The classical control problem is then discretized by using a finite element method in space and the implicit Crank-Nicolson midpoint scheme in time, while the co...
متن کاملVariational Discretization and Mixed Methods for Semilinear Parabolic Optimal Control Problem
In this paper we study the variational discretization and mixed finite element methods for optimal control problem governed by semilinear parabolic equations. The space discretization of the state variable is done using usual mixed finite elements. The state and the co-state are approximated by the lowest order RaviartThomas mixed finite element spaces and the control is not discreted. Then we ...
متن کاملVariational Discretization and Adaptive Mixed Methods for Integro-Differential Optimal Control Problems
In this paper, we study the variational discretization and adaptive mixed finite element methods for optimal control problems governed by integro-differential equations. The state and the co-state are discretized by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discretized. We derive a posteriori error estimates for the coupled state and control approximatio...
متن کاملAdaptive Mixed Methods and Variational Discretization for Nonlinear Optimal Control Problems
In this paper, we study the adaptive mixed finite element methods and variational discretization for optimal control problems governed by nonlinear elliptic equations. The state and the co-state are discretized by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discretized. Then we derive a posteriori error estimates both for the coupled state and the control ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 1 شماره 1
صفحات 29- 36
تاریخ انتشار 2011-09-11
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023